Skeptophilia (skep-to-fil-i-a) (n.) - the love of logical thought, skepticism, and thinking critically. Being an exploration of the applications of skeptical thinking to the world at large, with periodic excursions into linguistics, music, politics, cryptozoology, and why people keep seeing the face of Jesus on grilled cheese sandwiches.
Showing posts with label cosmic inflation. Show all posts
Showing posts with label cosmic inflation. Show all posts

Thursday, June 12, 2025

A plea on behalf of Schrödinger's cat

I'm going to make a dual plea to all y'all:

  1. Before you accept a paranormal or supernatural explanation for something, make sure you've ruled out all the normal and natural ones first.
  2. Before you try to apply a scientific explanation to an alleged paranormal phenomenon, make sure you understand the science itself first.

I stumbled on an especially good (well, bad, actually) example of what happens when you break both of these rules of thumb with "paranormal explorer, investigator, and researcher" Ashley Knibb's piece, "Into the Multiverse to Search for Ghosts: Are We Seeing Parallel Realities?"  The entire article could have been replaced by the word "No," which would represent a substantial gain in both terseness and accuracy, but unfortunately Knibb seems to think that the multiverse model might actually explain a significant chunk of supernatural claims.

Let's start out with the fact that he joins countless others in misusing the word dimension to mean "some place other than the regular world we see around us."  To clear this up, allow me to quote the first line of the damn Wikipedia article on the topic: "the dimension of a mathematical space (or object) is defined as the minimum number of coordinates needed to specify any point within it."  We live in a three-dimensional space because three measurements -- up/down, right/left, forward/backward -- are necessary to pinpoint where exactly something is.

So saying that something is "in another dimension" makes about as much sense as saying your Uncle Fred lives in "horizontal."

Then he goes on to mention the quantum multiverse (also known as the Many-Worlds Interpretation), the bubble universe model, and brane theory as possible scientific bases for explaining the paranormal.  First off, I'll give him as much as to say that these are all legitimate theoretical models, although the three have little to nothing to do with each other.  The Many-Worlds Interpretation of quantum theory arises because of the puzzle of the collapse of the wave function, which (in the Copenhagen Interpretation) seems strangely connected to the concept of an observer.  Physicist Hugh Everett postulated that observer-dependency could be eliminated if every quantum collapse results in a split -- every possible outcome of a quantum collapse is realized in some universe.

[Image licensed under the Creative Commons Christian Schirm, Schroedingers cat film, CC0 1.0]

Then there's the bubble universe model, which comes from the cosmological concept of inflation.  This theory suggests that our current universe was created by the extremely rapid expansion of a "bubble" of inflating spacetime, and that such bubbles could occur again and create new universes.  Finally, brane theory is an offshoot of string theory, where a brane is a higher-dimensional structure whose properties might be used to explain the apparent free parameters in the Standard Model of Particle Physics.

These three models do have one thing in common, though.  None of them has been supported by experimental evidence or observation (yet).  For the first two, it very much remains to be seen if they could be.  In Everett's Many-Worlds Interpretation, the different timelines are afterward completely and permanently sealed off from one another; we don't have access to the timeline in which a particular electron zigged instead of zagging, much less the one where you married your childhood sweetheart and lived happily ever after.  The theory, as far as it goes, appears to be completely untestable and unfalsifiable.  (This is what led to Wolfgang Pauli's brilliantly acerbic quip, "This isn't even wrong.")  

And as far as the bubble universe goes, any newly-formed bubbles would expand away from everything else at rates faster than the speed of light (it's believed that space itself isn't subject to the Universal Speed Limit -- thus keeping us science fiction aficionados in continuing hopes for the development of a warp drive).  Because information maximally travels at the speed of light, any knowledge of the bubble next door will be forever beyond our reach.

Be that as it may, Knibb blithely goes on to suggest that one of these models, or some combination, could be used to explain not only ghosts, but poltergeists, "audible phenomena," déjà vu, the Mandela Effect, sleep paralysis, and cryptid sightings.

Whoo-wee.  Sir, you are asking three speculative theories to do some awfully heavy lifting.

But now we get to the other piece, which is deciding that all of the listed phenomena are, in fact, paranormal in nature.  Ghosts and poltergeists -- well, like I've said many times before, I'm doubtful, but convincible.  However, I'm in agreement with C. S. Lewis's character MacPhee, who said, "If anything wants Andrew MacPhee to believe in its existence, I’ll be obliged if it will present itself in full daylight, with a sufficient number of witnesses present, and not get shy if you hold up a camera or a thermometer."  A lot of "audible phenomena" can be explained by the phenomenon of priming -- when the mind is already anticipating a particular input (such as a creepy voice on a static-y recording) we're more likely to perceive it even if there's nothing there in actuality.  (As skeptic Crispian Jago put it, "You can't miss it when I tell you what's there.")  Déjà vu is still a bit of a mystery, but some research out of Colorado State University a few years ago suggests that it's also a brain phenomenon, in this case stemming from a misinterpretation of familiar sensory stimuli.  The Mandela Effect is almost certainly explained by the plasticity of human memory.  Sleep paralysis is a thoroughly studied, and reasonably well understood, neurological phenomenon (although apparently scary as hell).

As far as cryptid sightings -- well, y'all undoubtedly know what I think of most of those.

So the first step with all of these is to establish that there's anything there to explain.  The second is to demonstrate that the scientific explanations we do have are inadequate to explain them.

The third is to learn some fucking science before you try to apply quantum physics, inflationary cosmology, and string theory to why you got creeped out in a haunted pub.

Okay, I'm probably coming across as being unwarrantedly snarky, here.  But really.  There's no excuse for this kind of thing.  Even if you're not up to reading peer-reviewed science papers on the topics, a cursory glance at the relevant Wikipedia pages should be enough to convince you that (for example) the bubble universe model cannot explain ghosts.  Misrepresenting the science in this way isn't doing anyone any favors, most especially the people who seriously investigate claims of the supernatural, such as the generally excellent Society for Psychical Research.

As far as whether there's anything to any of these allegedly paranormal claims -- well, I'm not prepared to answer that categorically.  All I can say is that of the ones I've looked into, none of them meet the minimum standard of evidence that it would take to convince someone whose mind isn't already made up.  But I'm happy to hear about it if you think you've got a case that could change my mind.

Just make sure to tell the ghost not to get shy if I hold up a camera or a thermometer.

****************************************


Saturday, November 25, 2023

Paradoxes within paradoxes

Sometimes the simplest, most innocuous-seeming questions can lead toward mind-blowingly profound answers.

I remember distinctly running into one of these when I was in -- I think -- eighth grade science class.  It was certainly pre-high-school; whether it was from Mrs. Guerin at Paul Breaux Junior High School, or another of my teachers, is a memory that has been lost in the sands of time and middle-aged forgetfulness.

What I have never forgotten is the sudden, pulled-up-short response I had to what has been nicknamed Olbers's Paradox, named after 18th century German astronomer Heinrich Wilhelm Matthias Olbers, who first thought to ask the question -- if the universe is infinite, as it certainly seems to be, why isn't the night sky uniformly and dazzlingly bright?

I mean, think about it.  If the universe really is infinite, then no matter what direction you look, your line of sight is bound to intersect with a star eventually.  So there should be light coming from every direction at once, and the night sky shouldn't be dark.  Why isn't it?

The first thought was that there was something absorptive in the way -- cosmic dust, microscopic or submicroscopic debris left behind by stars and blown outward by stellar wind.  The problem is, there doesn't seem to be enough of it.  The average density of cosmic dust in interstellar space is less than a millionth of a gram per cubic meter.

When the answer was discovered, it was nothing short of mind-boggling.  It turns out Olbers's paradox isn't a paradox at all, because there is light coming at us from all directions, and the night sky is uniformly bright -- it's just that it's shining in a region of the spectrum our eyes can't detect.  It's called the three-degree cosmic microwave background radiation, and it appears to be pretty well isotropic (at equal intensities no matter where you look). It's one of the most persuasive arguments for the Big Bang model, and in fact what scientists have theorized about the conditions in the early universe added to what we know about the phenomenon of red-shifting (the stretching of wavelengths of light if the space in between the source and the detector is expanding) gives a number that is precisely what we see -- light peaking at a wavelength of around one millimeter (putting it in the microwave region of the spectrum) coming from all directions.

[Image licensed under the Creative Commons Original: Drbogdan Vector: Yinweichen, History of the Universe, CC BY-SA 3.0]

So, okay.  Olbers's paradox isn't a paradox, and its explanation led to powerful support for the Big Bang model.  But in science, one thing leads to another, and the resolution of Olbers's paradox led to another paradox -- the horizon problem.

The horizon problem hinges on Einstein's discovery that nothing, including information, can travel faster than the speed of light.  So if two objects are separated by a distance so great that there hasn't been time for light to travel from one to the other, then they are causally disconnected -- they can't have had any contact with each other, ever.

The problem is, we know lots of such pairs of objects.  There are quasars that are ten billion light years away -- and other quasars ten billion light years away in the opposite direction.  Therefore, those quasars are twenty billion light years from each other, so light hasn't had time to travel from one to the other in the 13.8 billion years since they were created.

Okay, so what?  They can't talk to each other.  But it runs deeper than that.  When the aforementioned cosmic microwave background radiation formed, on the order of 300,000 years after the Big Bang, those objects were already causally disconnected.  And the process that produced the radiation is thought to have been essentially random (it's called decoupling, and it occurred when the average temperature of the universe decreased enough to free photons from the plasma and send them streaming across space).

The key here is the word average.  Just as a microwaved cup of coffee could have an average temperature of 80 C but have spots that are cooler and spots that are hotter, the fact that the average temperature of the universe had cooled sufficiently to release photons doesn't mean it happened everywhere simultaneously, leaving everything at exactly the same temperature.  In fact, the great likelihood is that it wouldn't.  And since at that point there were already causally disconnected regions of space, there is no possible way they could interact in such a way as to smooth out the temperature distribution -- sort of like what happens when you stir a cup of coffee.

And yet one of the most striking things about the cosmic microwave background radiation is that it is very nearly isotropic.  The horizon problem points out how astronomically unlikely that is (pun intended) if our current understanding is correct.

One possible explanation is called cosmic inflation -- that a spectacularly huge expansion, in the first fraction of a second after the Big Bang, smoothed out any irregularities so much that everywhere did pretty much decouple at the same time.  The problem is, we still don't know if inflation happened, although work by Alan Guth (M.I.T.), Andrei Linde (Stanford), and Paul Steinhardt (Princeton) has certainly added a great deal to its credibility.

So as is so often the case with science, solving one question just led to several other, bigger questions.  But that's what's cool about it.  If you're interested in the way the universe works, you'll never run out of things to learn -- and ways to blow your mind.

****************************************



Tuesday, July 26, 2022

Seeing through the fog

There's something a little unsettling about the idea that when you're looking outward in space, you're looking backward in time.

If it seems like we're seeing things as they actually are, right now, it's only because (1) the speed of light is so fast, and (2) most of the objects we look at and interact with are relatively close by.  Even the Sun, though, which in astronomical terms is right on top of us, is eight light-minutes away, meaning that the light leaving its surface takes eight minutes to cross the 150 million kilometers between it and us.  If the Sun were suddenly to go dark -- not, mind you, a very likely occurrence -- we would have no way of knowing it for eight minutes.

The farther out you go, the worse it gets.  The nearest star to the Solar System, Proxima Centauri, is about 4.2 light years away.  So the awe-inspiring panorama of stars in a clear night sky is a snapshot of the past.  Some of the stars you're looking at (especially the red supergiants like Antares and Betelgeuse) might actually already have gone supernova, and that information simply hasn't gotten here yet.  None of the stars we see are in exactly the same positions relative to us as they appear to be to us right now.  

Worst of all is when you look way out, as the James Webb Space Telescope is currently doing, because then, you have to account not only for distance, but for the fact that the universe is expanding.  And it hasn't expanded at a uniform rate.  Current models support the inflationary model, which says that between 10^-36 and 10^-32 seconds after the Big Bang the universe expanded by a factor of around 10^26.  This seems like a crazy conjecture, but it immediately solves two perplexing problems in observational astronomy.

The Carina Nebula, as photographed by the James Webb Space Telescope [Image is in the Public Domain courtesy of NASA/JPL]

The first one, the horizon problem, has to do with the homogeneity of space.  Look as far out into space as you can in one direction, then do the same thing in the opposite direction, and what you'll see is essentially the same -- the same distribution of matter and energy.  The difficulty is that those two points are causally disconnected; they're far enough apart that light hasn't had time to travel from one to the other, and therefore no mechanism of communication can exist between them.  By our current understanding of information transfer, once causally disconnected, always causally disconnected.  So if something set the initial conditions in point A, how did point B end up with identical conditions if they've never been in contact with each other?  It seems like a ridiculous coincidence.

The other one is the flatness problem, which has to do with the geometry of space-time.  This subject gets complicated fast, and I'm a layperson myself, but as far as I understand it, the gist is this.  The presence of matter warps the fabric of space locally (as per the General Theory of Relativity), but what is its overall geometry?  From studies of such phenomenal as the cosmic microwave background radiation, it seems like the basic geometry of the universe as a whole is perfectly flat.  Once again, there seems to be no particular reason to expect that could occur by accident.

Both these problems are taken care of simultaneously by the inflationary model.  The horizon problem disappears if you assume that in the first tiny fraction of a second after the Big Bang, the entire universe was small enough to be causally connected, but during inflation the space itself expanded so fast that it carried pieces of it away faster than light can travel.  (This is not forbidden by the Theories of Relativity; matter and energy can't exceed the speed of light, but space-time itself is under no such stricture.)  The flatness problem is solved because the inflationary stretching smoothed out any wrinkles and folds that were in space-time at the moment of the Big Bang, just as taking a bunched-up bedsheet and pulling on all four corners flattens it out.

All of this will be facing some serious tests over the next few years as we get better and better at looking out into the far reaches.  Just last week a team at the University of Cambridge published a paper in Nature Astronomy about a new technique to look out so far that what you're seeing is only 378,000 years after the Big Bang.  (I know that may seem like a long time, but it's only 0.003% of the current age of the universe.)  The problem is that prior to this, the universe was filled with a fog of glowing hydrogen atoms, so it was close to opaque.  The new technique involves filtering out the "white noise" from the hydrogen haze, much the way as you can still see the shadows and contours of the landscape on a foggy day.  It's not going to be easy; the signal emitted by the actual objects that were there in the early universe is estimated to be a hundred thousand times weaker than the interference from the glowing fog.

It's mind-blowing.  I've been learning about this stuff for years, but I'm still boggled by it.  If I think about it too hard I'm a little like the poor woman in a video with science vlogger Hank Green, who is trying to wrap her brain around the idea that anywhere you look, if you go out far enough, you're seeing the same point in space (i.e. all spots currently 13.8 billion light years from us were condensed into a single location at the moment of the Big Bang), and seems to be about to have a nervous breakdown from the implications.  (Hat tip to my friend, the amazing author Robert Chazz Chute, for throwing the video my way.)

So think about all this next time you're looking up into a clear night sky.  It's not a bad thing to be reminded periodically how small we are.  The universe is a grand, beautiful, amazing, weird place, and how fortunate we are to be living in at time where we are finally beginning to understand how it works.

****************************************


Wednesday, January 2, 2019

Paradoxes within paradoxes

Sometimes the simplest, most innocuous-seeming questions can lead toward mind-blowingly profound answers.

I remember distinctly running into one of these when I was in -- I think -- 8th grade science class.  It was certainly pre-high-school; whether it was from Mrs. Guerin at Paul Breaux Junior High School, or another of my teachers, is a memory that has been lost in the sands of time and middle-aged forgetfulness.

What I have never forgotten is the sudden, pulled-up-short response I had to what has been nicknamed Olbers' Paradox, named after 18th century German astronomer Heinrich Wilhelm Matthias Olbers, who first thought to ask the question -- if the universe is infinite, as it certainly seems to be, why isn't the night sky uniformly and dazzlingly bright?

I mean, think about it.  If the universe really is infinite, then no matter what direction you look, your line of sight is bound to intersect with a star eventually.  So there should be light coming from every direction at once, and the night sky shouldn't be dark.  Why isn't it?

The first thought was that there was something absorptive in the way -- cosmic dust, microscopic or submicroscopic debris left behind by stars and blown outward by stellar wind.  The problem is, there doesn't seem to be enough of it; the average density of cosmic dust in interstellar space is less than a millionth of a gram per cubic meter.

When the answer was discovered, it was nothing short of mind-boggling.  It turns out Olbers' paradox isn't a paradox at all, because there is light coming at us from all directions, and the night sky is uniformly bright -- it's just that it's shining in a region of the spectrum our eyes can't detect.  It's called the three-degree cosmic microwave background radiation, and it appears to be pretty well isotropic (at equal intensities no matter where you look).  It's one of the most persuasive arguments for the Big Bang model, and in fact what scientists have theorized about the conditions in the early universe added to what we know about the phenomenon of red-shifting (the stretching of wavelengths of light if the space in between the source and the detector is expanding) gives a number that is precisely what we see -- light peaking at a wavelength of around one millimeter (putting it in the microwave region of the spectrum) coming from all directions.

[Image licensed under the Creative Commons Original: Drbogdan Vector: Yinweichen, History of the Universe, CC BY-SA 3.0]

So, okay.  Olbers' paradox isn't a paradox, and its explanation led to powerful support for the Big Bang model.  But in science, one thing leads to another, and the resolution of Olbers' paradox led to another paradox -- the horizon problem.

The horizon problem hinges on Einstein's discovery that nothing, including information, can travel faster than the speed of light.  So if two objects are separated by a distance so great that there hasn't been time for light to travel from one to the other, then they are causally disconnected -- they can't have had any contact with each other, ever.

The problem is, we know lots of such pairs of objects.  There are quasars that are ten billion light years away -- and other quasars ten billion light years away in the opposite direction.  Therefore, those quasars are twenty billion light years from each other, so light hasn't had time to travel from one to the other in the 13.8 billion years since they were created.

Okay, so what?  They can't talk to each other.  But it runs deeper than that.  When the aforementioned cosmic microwave background radiation formed, on the order of 300,000 years after the Big Bang, those objects were already causally disconnected.  And the process that produced the radiation is thought to have been essentially random (it's called decoupling, and it occurred when the average temperature of the universe decreased enough to free photons from the plasma and send them streaming across space).

The key here is the word average.  Just as a microwaved cup of coffee could have an average temperature of 80 C but have spots that are cooler and spots that are hotter, the fact that the average temperature of the universe had cooled sufficiently to release photons doesn't mean it happened everywhere simultaneously, leaving everything at exactly the same temperature.  In fact, the great likelihood is that it wouldn't.  And since at that point there were already causally disconnected regions of space, there is no possible way they could interact in such a way as to smooth out the temperature distribution -- sort of like what happens when you stir a cup of coffee.

And yet one of the most striking things about the cosmic microwave background radiation is that it is very nearly isotropic.  The horizon problem points out how astronomically unlikely that is (pun intended) if our current understanding is correct.

One possible explanation is called cosmic inflation -- that a spectacularly huge expansion, in the first fraction of a second after the Big Bang, smoothed out any irregularities so much that everywhere did pretty much decouple at the same time.    The problem is, we still don't know if inflation happened, although work by Alan Guth (M.I.T.), Andrei Linde (Stanford), and Paul Steinhardt (Princeton) has certainly added a great deal to its credibility.

So as is so often the case with science, solving one question just led to several other, bigger questions.  But that's what's cool about it.  If you're interested in the way the universe works, you'll never run out of things to learn -- and ways to blow your mind.

****************************************

This week's Skeptophilia book recommendation is one of personal significance to me -- Michael Pollan's latest book, How to Change Your Mind.  Pollan's phenomenal writing in tours de force like The Omnivore's Dilemma and The Botany of Desire shines through here, where he takes on a controversial topic -- the use of psychedelic drugs to treat depression and anxiety.

Hallucinogens like DMT, LSD, ketamine, and psilocybin have long been classified as schedule-1 drugs -- chemicals which are off limits even for research except by a rigorous and time-consuming approval process that seldom results in a thumbs-up.  As a result, most researchers in mood disorders haven't even considered them, looking instead at more conventional antidepressants and anxiolytics.  It's only recently that there's been renewed interest, when it was found that one administration of drugs like ketamine, under controlled conditions, was enough to alleviate intractable depression, not just for hours or days but for months.

Pollan looks at the subject from all angles -- the history of psychedelics and why they've been taboo for so long, the psychopharmacology of the substances themselves, and the people whose lives have been changed by them.  It's a fascinating read -- and I hope it generates a sea change in our attitudes toward chemicals that could help literally millions of people deal with disorders that can rob their lives of pleasure, satisfaction, and motivation.

[If you purchase the book from Amazon using the image/link below, part of the proceeds goes to supporting Skeptophilia!]




Wednesday, May 2, 2018

Condensation and inflation

Online Critical Thinking course -- free for a short time!

This week, we're launching a course called Introduction to Critical Thinking through Udemy!  It includes about forty short video lectures, problem sets, and other resources to challenge your brain, totaling about an hour and a half.  The link for purchasing the course is here, but we're offering it free to the first hundred to sign up!  (The free promotion is available only here.)  We'd love it if you'd review the course for us, and pass it on to anyone you know who might be interested!

Thanks!

**************************

I still recall my astonishment when one of my physics professors in college said, "We understand the physics of the universe fairly well back to about one-trillionth of a second after the Big Bang.  Before that, though, things are a little dicey."

To me, that sounded like having a pretty good handle on things, but that first one-trillionth of a second was pretty spectacular.  There were some extraordinary things going on very early along in that tiny time span -- from about 10−36 to sometime between 10−33 and 10−32 seconds after the initial singularity.  For those of you who are not mathematical types, this is the time between:


0.000000000000000000000000000000000001 seconds, and
0.0000000000000000000000000000001 seconds following the Big Bang.

This era is called the "inflationary period," a term that was coined by Alan Guth (then at Cornell) and Andrei Linde of Stanford, way back in 1979, who were investigating the question of why there are no magnetic monopoles (magnetic particles with only a north or south pole, but not both) and stumbled upon a phenomenon called a false vacuum that accounted for the known properties of matter and the universe.  The problem was, the mathematics of the false vacuum required a period extremely early on in the universe's history when it underwent exponential expansion.  If you thought the time duration of inflation defied the imagination, the size expansion is worse -- in that minuscule fraction of a second, the universe increased in volume by a factor of 1078 -- one followed by 78 zeroes.

(Regular readers of Skeptophilia may remember that a while back, I wrote about a rather hysterical article that was making the rounds, speculating about the likelihood of our false vacuum state being superseded by a true vacuum -- which would rapidly destroy the entire universe.  The general conclusion of the physicists is that the risk of this is close enough to zero that you shouldn't be losing any sleep over it.)


[Image licensed under the Creative Commons Original: Drbogdan Vector: YinweichenHistory of the UniverseCC BY-SA 3.0]

As crazy as this sounds, it's been borne up by the evidence.  The vast majority of the research done on this topic is far beyond me even considering my B.S. in physics, but suffice it to say that most physicists accept inflation as a reality.  It accounts for a number of interesting phenomena, including isotropy -- that the universe looks homogeneous no matter what direction you look, which begs an explanation unless you think that the Earth is located in the dead center of the universe, a possibility that is even less than our risk of being destroyed by a true vacuum.  So it may sound hard to believe, but apparently, this enormous expansion in an unimaginably tiny fraction of a second actually happened.

Just last week there was another piece of evidence added to all of this, wherein scientists at the University of Maryland created a peculiar form of matter called a Bose-Einstein condensate that exhibited the properties of cosmic inflation, albeit (and fortunately) on a much smaller scale.  Emily Conover, over at Science News, describes the experiment as follows:
Shaped into a tiny, rapidly expanding ring, the condensate grew from about 23 micrometers in diameter to about four times that size in just 15 milliseconds.  The behavior of that widening condensate re-created some of the physics of inflation, a brief period just after the Big Bang during which the universe rapidly ballooned in size (SN Online: 12/11/13) before settling into a more moderate expansion rate. 
In physics, seemingly unrelated systems can have similarities under the hood. Scientists have previously used Bose-Einstein condensates to simulate other mysteries of the cosmos, such as black holes (SN: 11/15/14, p. 14).  And the comparison between Bose-Einstein condensates and inflation is particularly apt: A hypothetical substance called the inflaton field is thought to drive the universe’s extreme expansion, and particles associated with that field, known as inflatons, all take on the same quantum state, just as atoms do in the condensate.
Another point in favor of this research having recreated on some level the early expansion of the universe is that sound waves sent through the condensate increased in wavelength -- just as light has been red-shifted by the expansion of the space it's traveling through.

I'd be lying if I said I understood last week's paper on anything but the most rudimentary level, but it still gives me a sense of wonder that we can peer into the distant past -- into a time that lasted almost no time at all -- and use that information to draw conclusions about why the universe has the properties it does.   The progress we've made in expanding scientific understanding, in just the last twenty years, is mind-boggling.

All of which makes me wonder what the next twenty years will bring.  I'm hoping it's a warp drive, but that might be a forlorn hope, given that the General Theory of Relativity is strictly enforced in most jurisdictions.

************************************

This week's featured book is a wonderful analysis of all that's wrong with media -- Jamie Whyte's Crimes Against Logic: Exposing the Bogus Arguments of Politicians, Priests, Journalists, and Other Serial Offenders.  A quick and easy read, it'll get you looking at the nightly news through a different lens!