Skeptophilia (skep-to-fil-i-a) (n.) - the love of logical thought, skepticism, and thinking critically. Being an exploration of the applications of skeptical thinking to the world at large, with periodic excursions into linguistics, music, politics, cryptozoology, and why people keep seeing the face of Jesus on grilled cheese sandwiches.
Showing posts with label paralogs. Show all posts
Showing posts with label paralogs. Show all posts

Thursday, February 12, 2026

Echoes of the ancestor

One of the most persuasive pieces of evidence of the common ancestry of all life on Earth is genetic overlap -- and the fact that the percent overlap gets higher when you compare more recently-diverged species.

What is downright astonishing, though, is that there is genetic overlap between all life on Earth.  Yeah, okay, it's easy enough to imagine there being genetic similarity between humans and gorillas, or dogs and foxes, or peaches and plums; but what about more distant relationships?  Are there shared genes between humans... and bacteria?

The answer, amazingly, is yes, and the analysis of these universal paralogs was the subject of a fascinating paper in the journal Cell Genomics last week.  Pick any two organisms on Earth -- choose them to be as distantly-related to each other as you can, if you like -- and they will still share five groups of genes, used for making the following classes of enzymes:

  • aminotransferases
  • imidazole-4-carboxamide isomerase
  • carbamoyl phosphate synthetases
  • aminoacyl-tRNA synthetases
  • initiation facter IF2

The first three are connected with amino acid metabolism; the last two, with the process of translation -- which decodes the message in mRNA and uses it to synthesize proteins.

The fact that all life forms on Earth have these five gene groups suggests something wild; that we're looking at genes that were present in LUCA -- the Last Universal Common Ancestor, our single-celled, bacteria-like forebear that lived in the primordial seas an estimated four billion years ago.  Since then, two things happened -- the rest of LUCA's genome diverged wildly, under the effects of mutation and selection, so that now we have kitties and kangaroos and kidney beans; and those five gene groups were under such extreme stabilizing selection that they haven't significantly changed, in any of the branches of the tree of life, in millions or billions of generations.

The authors write:

Universal paralog families are an important tool for understanding early evolution from a phylogenetic perspective, offering a unique and valuable form of evidence about molecular evolution prior to the LUCA.  The phylogenetic study of ancient life is constrained by several fundamental limitations.  Both gene loss across multiple lineages and low levels of conservation in some gene families can obscure the ancient origin of those gene families.  Furthermore, in the absence of an extensive diagnostic fossil record, the dependence of molecular phylogenetics on conserved gene sequences means that periods of evolution that predated the emergence of the genetic system cannot be studied.  Even so, emerging technologies across a number of areas of computational biology and synthetic biology will expand our ability to reconstruct pre-LUCA evolution using these protein families.  As our understanding of the LUCA solidifies, universal paralog protein families will provide an indispensable tool for pushing our understanding of early evolutionary history even further back in time, thereby describing the foundational processes that shaped life as we know it today.
It's kind of mind-boggling that after all that time, there's any commonality left, much less as much as there's turned out to be.  "The history of these universal paralogs is the only information we will ever have about these earliest cellular lineages, and so we need to carefully extract as much knowledge as we can from them," said Greg Fournier of MIT, who co-authored the paper, in an interview with Science Daily.

So all life on Earth really is connected, and the biological principle of "unity in diversity" is literally true.  Good thing for us; the fact that we have shared metabolic pathways -- and especially, shared genetic transcription and translation mechanisms -- is what allows us to create transgenic organisms, which express a gene from a different species.  For example, this technique is the source of most of the insulin used by the world's diabetics -- bacteria that have been engineered to contain a human insulin gene.  Bacteria read DNA exactly the same way we do, so they transcribe and translate the human insulin gene just as our own cells would, producing insulin molecules identical to our own.

This is also, conversely, why the idea of an alien/human hybrid would never work.  Even assuming that some alien species we met was humanoid, and had all the right protrusions and indentations to allow mating to work, there is just about a zero likelihood that the genetics of two species that didn't have a common ancestor would line up well enough to allow hybridization.  Consider that most of the time, even relatively closely-related terrestrial species can't hybridize and produce fertile offspring; there's no way humans could do so with any presumed alien species.

Star Trek's claims to the contrary notwithstanding.


So that's our mind-blowing science news of the day.  The discovery of five gene families that were present in our ancestors four billion years ago, and which are still present today in every life form on Earth.  Some people apparently think it's demeaning to consider that we're related to "lower" species; me, I think it's amazingly cool to consider that everything is connected, that I'm just one part of a great continuum that has been around since not long after the early Earth cooled enough to have liquid water.  All the more reason to take care of the biosphere -- considering it's made up of our cousins.

****************************************