Skeptophilia (skep-to-fil-i-a) (n.) - the love of logical thought, skepticism, and thinking critically. Being an exploration of the applications of skeptical thinking to the world at large, with periodic excursions into linguistics, music, politics, cryptozoology, and why people keep seeing the face of Jesus on grilled cheese sandwiches.
Showing posts with label science reporting. Show all posts
Showing posts with label science reporting. Show all posts

Tuesday, January 31, 2023

Reversing the core

I get really frustrated with science news reporting sometimes.

I mean, on the one hand, it's better that laypeople get exposed to science somehow, instead of the usual fare of the mainstream media, which is mostly stories about seriously depressing political stuff and the latest antics of celebrities.  But there's a problem with science reporting, and it's the combination of a lack of depth in understanding by the reporters, and a more deliberate desire to create clickbaity headlines and suck people in.

Take, for example, the perfectly legitimate (although not universally accepted) piece of research that appeared on January 23 in Nature Geoscience, suggesting that the Earth's inner core oscillates in its rotational speed with respect to the rest of the planet -- first going a little faster, then slowing a bit until its rotational rate matches Earth's angular velocity, then slowing further so the rest of the planet for a time outruns the core.  Then it speeds up, and does the whole thing in reverse.  The reason -- again, if it actually happens, which is still a matter of discussion amongst the experts -- is that the speed-up/slowdown occurs because of a combination of friction with the outer core, the effects of the magnetic field, and the pull of gravity from the massive mantle that lies outside it.

[Image licensed under the Creative Commons CharlesC, Earth cutaway, CC BY-SA 3.0]

That's not how this story got reported, though.  I've now seen it several times in different mainstream media, and universally, they claim that what's happening is that the inner core has stopped, and started to spin the other way -- i.e. the inner core is now rotating once a day, but in the opposite direction from the rest of the Earth.

This is flat-out impossible.  Let's start with the fact that the inner core has a mass of about 110,000,000,000,000,000,000,000 kilograms.  A mass that huge, spinning on its axis once a day, has a stupendous amount of angular momentum.  To stop the rotation of that humongous ball of nickel and iron would take an unimaginable amount of torque, and that's not even counting overcoming the drag that would be exerted by the outer core as you tried to make the inner core slow down.  (I could calculate how much, but it's just another huge number and in any case I don't feel like it, so suffice it to say it's "a shitload of torque.")  Then, to accelerate it so it's rotating at its original rate but in the opposite direction would take that much torque again.

Where's the energy coming from to do all that?

Here, the fault partly lies with the scientists; they did use the words "reversing direction" in their press release, but what they meant was "reversing direction with respect to the motion of the rest of the Earth."  I get that relative motion can be confusing to visualize -- but giving people the impression that something has stopped the inner core of the Earth and started it rotating in the opposite direction gives new meaning to "inaccurate reporting."

Worse still, I'm already seeing the woo-woos latch onto this and claim that it's a sign of the apocalypse, that the Evil Scientists™ are somehow doing this deliberately to destroy the Earth, that it's gonna make the magnetic field collapse and trigger a mass extinction, and that it's why the climate has been so bonkers lately.  (Anything but blame our rampant fossil fuel use, apparently.)  Notwithstanding that if you read the actual paper, you'll find that (1) whatever this phenomenon is, it's been going on for ages, (2) it represents a really small shift in the inner core's angular velocity, and (3) it probably won't have any major effects on we ordinary human beings.  After all, (4) the scientists have only recently figured out it's happening, and (5) not all of them believe it is happening.

So let's just all calm down a bit, okay?

In any case, I'd really appreciate it if the people reporting science stories in the mainstream media would actually read the damn papers they're reporting on.  It'd make the job of us skeptics a hell of a lot easier.  Thanks bunches.

****************************************


Tuesday, March 31, 2020

Fungus fracas

I suppose it's kind of a forlorn hope that popular media starts doing a better job of reporting on stories about science research.

My most recent example of attempting to find out what was really going on started with an article from Popular Mechanics sent to me by a friend, called "You Should Know About This Chernobyl Fungus That Eats Radiation."  The kernel of the story -- that there is a species of fungus that has evolved extreme radiation tolerance, and apparently now uses high-energy ionizing radiation to power its metabolism -- is really cool, and immediately put me in mind of the wonderful line from Ian Malcolm in Jurassic Park -- "Life finds a way."

There were a few things about the article, though, that made me give it my dubious look:


The first was that the author repeatedly says the fungus is taking radiation and "converting it into energy."  This is a grade-school mistake -- like saying "we turn our food into energy" or "plants convert sunlight into energy."  Nope, sorry, the First Law of Thermodynamics is strictly enforced, even at nuclear disaster sites; no production of energy allowed.  What the fungus is apparently doing is harnessing the energy the radiation already had, and storing it as chemical energy for later use.  The striking thing is that it's able to do this without its tissue (and genetic material) suffering irreparable damage.  Most organisms, upon exposure to ionizing radiation, either end up with permanently mutated DNA or are killed outright.

Apparently the fungus is able to pull off this trick by having huge amounts of melanin, a dark pigment that is capable of absorbing radiation.  In the melanin in our skin, the solar energy absorbed is converted to heat, but this fungus has hitched its melanin absorbers to its metabolism, allowing it to function a bit like chlorophyll does in plants.

Another thing that made me wonder was the author's comment that the fungus could be used to clean up nuclear waste sites.  This put me in mind of a recent study of pillbugs, little terrestrial crustaceans that apparently can survive in soils contaminated with heavy metals like lead, cadmium, and mercury.  Several "green living" sites misinterpreted this, and came to the conclusion that pillbugs are somehow "cleaning the soil" -- in other words, getting rid of the heavy metals entirely.  Of course, the truth is that the heavy metals are still there, they're just inside the pillbug, and when the pillbug dies and decomposes they're right back in the soil where they started.  Same for the radioactive substances in Chernobyl; the fungus's ability to use radiation as a driver for its metabolism doesn't mean it's somehow miraculously destroyed the radioactive substances themselves.

Anyhow, I thought I'd dig a little deeper into the radioactive fungus thing and see if I could figure out what the real scoop was, and I found an MSN article that does a bit of a better job at describing the radiation-to-chemical-energy process (termed radiosynthesis), and says that the scientists investigating it are considering its use as a radiation blocker (not a radiation destroyer).  Grow it on the walls of the International Space Station, where long-term exposure to cosmic rays is a potential health risk to astronauts, and it might not only shield the interior but use the absorbed cosmic rays to fuel its own growth.

Then I saw that the MSN article named the actual species of fungus, Cryptococcus neoformans.  And when I read this name, I said, "... wait a moment."

Cryptococcus neoformans is a fungal pathogen, responsible for a nasty lung infection called cryptococcosis.  It's an opportunist, most often causing problems in people with compromised immune systems, but once you've got it it's hard to get rid of -- like many fungal infections, it doesn't respond quickly or easily to medication.  And if it becomes systemic -- escapes from your lungs and infects the rest of your body -- the result is cryptococcal meningitis, which has a mortality rate of about 20%.

So not really all that sanguine about painting the stuff on the interior walls of the ISS.

Anyhow, all this is not to say the fungus and its evolutionary innovation are not fascinating.  I just wish science reporting in popular media could do a better job.  I know journalists can't put in all the gruesome details and technical jargon, but boiling something down and making it understandable does not require throwing in stuff that's downright misleading.  I probably come off as a grumpy curmudgeon for even pointing this out, but I guess that's inevitable because I am a grumpy curmudgeon.

So while they're at it, those damn journalists should get off my lawn.

*******************************

In the midst of a pandemic, it's easy to fall into one of two errors -- to lose focus on the other problems we're facing, and to decide it's all hopeless and give up.  Both are dangerous mistakes.  We have a great many issues to deal with besides stemming the spread and impact of COVID-19, but humanity will weather this and the other hurdles we have ahead.  This is no time for pessimism, much less nihilism.

That's one of the main gists in Yuval Noah Harari's recent book 21 Lessons for the 21st Century.  He takes a good hard look at some of our biggest concerns -- terrorism, climate change, privacy, homelessness/poverty, even the development of artificial intelligence and how that might impact our lives -- and while he's not such a Pollyanna that he proposes instant solutions for any of them, he looks at how each might be managed, both in terms of combatting the problem itself and changing our own posture toward it.

It's a fascinating book, and worth reading to brace us up against the naysayers who would have you believe it's all hopeless.  While I don't think anyone would call Harari's book a panacea, at least it's the start of a discussion we should be having at all levels, not only in our personal lives, but in the highest offices of government.