Skeptophilia (skep-to-fil-i-a) (n.) - the love of logical thought, skepticism, and thinking critically. Being an exploration of the applications of skeptical thinking to the world at large, with periodic excursions into linguistics, music, politics, cryptozoology, and why people keep seeing the face of Jesus on grilled cheese sandwiches.
Showing posts with label cosmic void. Show all posts
Showing posts with label cosmic void. Show all posts

Wednesday, July 16, 2025

Tense situation

In my Critical Thinking classes, I did a unit on statistics and data, and how you tell if a measurement is worth paying attention to.  One of the first things to consider, I told them, is whether a particular piece of data is accurate or merely precise -- two words that in common parlance are used interchangeably.

In science, they don't mean the same thing.  A piece of equipment is said to be precise if it gives you close to the same value every time.  Accuracy, though, is a higher standard; data are accurate if the values are not only close to each other when measured with the same equipment, but agree with data taken independently, using a different device or a different method.

A simple example is that if my bathroom scale tells me every day for a month that my mass is (to within one kilogram either way) 239 kilograms, it's highly precise, but very inaccurate.

This is why scientists always look for independent corroboration of their data.  It's not enough to keep getting the same numbers over and over; you've got to be certain those numbers actually reflect reality.

This all comes up because of a new look at one of the biggest scientific questions known -- the rate of expansion of the entire universe.

[Image is in the Public Domain, courtesy of NASA]

A while back, I wrote about some experiments that were allowing physicists to home in on the Hubble constant, a quantity that is a measure of how fast everything in the universe is flying apart.  And the news appeared to be good; from a range of between 50 and 500 kilometers per second per megaparsec, physicists had been able to narrow down the value of the Hubble constant to between 65.3 and 75.6.

The problem is, nobody's been able to get closer than that -- and in fact, recent measurements have widened, not narrowed, the gap.

There are two main ways to measure the Hubble constant.  The first is to use information like red shiftCepheid variables (stars whose period of brightness oscillation varies predictably with their intrinsic brightness, making them a good "standard candle" to determine the distance to other galaxies), and type 1a supernovae to figure out how fast the galaxies we see are receding from each other.  The other is to use the cosmic microwave background radiation -- the leftovers from the radiation produced by the Big Bang -- to determine the age of the universe, and therefore, how fast it's expanding.

So this is a little like checking my bathroom scale by weighing myself on it, then comparing my weight as measured by the scale at the gym and seeing if I get the same answer.

And the problem is, the measurement of the Hubble constant by these two methods is increasingly looking like it's resulting in two irreconcilably different values.  

The genesis of the problem is that as our measurement ability has become more and more precise, the error bars associated with data collection have shrunk considerably.  And if the two measurements were not only precise, but also accurate, you would expect that our increasing precision would result in the two values getting closer and closer together.

Exactly the opposite has happened.

"Five years ago, no one in cosmology was really worried about the question of how fast the universe was expanding," said astrophysicist Daniel Mortlock of Imperial College London.  "We took it for granted.  Now we are having to do a great deal of head scratching – and a lot of research...  Everyone’s best bet was that the difference between the two estimates was just down to chance, and that the two values would converge as more and more measurements were taken. In fact, the opposite has occurred.  The discrepancy has become stronger.  The estimate of the Hubble constant that had the lower value has got a bit lower over the years and the one that was a bit higher has got even greater."

This discrepancy -- called the Hubble tension -- is one of the most vexing problems in astrophysics today.  Especially given that repeated analysis of both the methods used to determine the expansion rate have resulted in no apparent problem with either one.

The two possible solutions to this boil down to (1) our data are off, or (2) there's new physics we don't know about.  A new solution that falls into the first category was proposed last week at the annual meeting of the Royal Astronomical Society by Indranil Banik of the University of Portsmouth, who has been deeply involved in researching this puzzle.  It's possible, he said, that the problem is with one of our fundamental assumptions -- that the universe is both homogeneous and isotropic.

These two are like the ultimate extension of the Copernican principle, that the Earth (and the Solar System and the Milky Way) do not occupy a privileged position in space.  Homogeneity means that any randomly-chosen blob of space is equally likely to have stuff in it as any other; in other words, matter and energy are locally clumpy but universally spread out.  Isotropy means there's no difference dependent on direction; the universe looks pretty much the same no matter which direction you look.

What, Banik asks, if our mistake is in putting together the homogeneity principle with measurements of what the best-studied region of space is like -- the parts near us?

What if we live in a cosmic void -- a region of space with far less matter and energy than average?

We've known those regions exist for a while; in fact, regular readers might recall that a couple of years ago, I wrote a post about one of the biggest, the Boötes Void, which is so large and empty that if we lived right at the center of it, we wouldn't even have been able to see the nearest stars to us until the development of powerful telescopes in the 1960s.  Banik suggests that the void we're in isn't as dramatic as that, but that a twenty percent lower-than-average mass density in our vicinity could account for the discrepancy in the Hubble constant.

"A potential solution to [the Hubble tension] is that our galaxy is close to the center of a large, local void," Banik said.  "It would cause matter to be pulled by gravity towards the higher density exterior of the void, leading to the void becoming emptier with time.  As the void is emptying out, the velocity of objects away from us would be larger than if the void were not there.  This therefore gives the appearance of a faster local expansion rate...  The Hubble tension is largely a local phenomenon, with little evidence that the expansion rate disagrees with expectations in the standard cosmology further back in time.  So a local solution like a local void is a promising way to go about solving the problem."

It would also, he said, line up with data on baryon acoustic oscillations, the fossilized remnants of shock waves from the Big Bang, which account for some of the fine structure of the universe.

"These sound waves travelled for only a short while before becoming frozen in place once the universe cooled enough for neutral atoms to form," Banik said.  "They act as a standard ruler, whose angular size we can use to chart the cosmic expansion history.  A local void slightly distorts the relation between the BAO angular scale and the redshift, because the velocities induced by a local void and its gravitational effect slightly increase the redshift on top of that due to cosmic expansion.  By considering all available BAO measurements over the last twenty years, we showed that a void model is about one hundred million times more likely than a void-free model with parameters designed to fit the CMB observations taken by the Planck satellite, the so-called homogeneous Planck cosmology."

Which sounds pretty good.  I'm only a layperson, but this is the most optimistic I've heard an astrophysicist get on the topic.  Now, it falls back on the data -- showing that the mass/energy density in our local region of space really is significantly lower than average.  In other words, that the universe isn't homogeneous, at least not on those scales.

I'm sure the astrophysics world will be abuzz with this new proposal, so keep your eyes open for developments.  Me, I think it sounds reasonable.  Given recent events here on Earth, it's unsurprising the rest of the universe is rushing away from us.  I bet the aliens lock the doors on their spaceships as they fly by.

****************************************


Saturday, June 8, 2019

Taking the temperature of the universe

There's something compelling about the things in our universe that are on a wildly different scale than we are.  The very tiny -- subatomic particles, atoms, even things as (comparatively) large as molecules -- boggle our minds by their bizarre behavior, a body of knowledge collectively known as quantum mechanics.  Likewise, the very large bowls us over by our positions in a cosmos that makes even the most arrogant and human-centric of us feel insignificant.

It's the large end of the scale that's been a fascination of mine for some time.  I remember as a teenager running into the classic 1977 video Powers of Ten, that starts hovering a meter above the hand of a sleeping man in a park, and then moves away from him at an increasing speed, moving ten times faster every ten seconds.  Before much time has elapsed -- and the whole video is under ten minutes long -- we are outside of the known universe, and our own "Local Group" of galaxies is a mere dot in the center of the screen.  Then we dive back down toward the sleeping man, this time covering ten times less distance every ten seconds, and finally are centered on a single proton in a carbon atom in one of his DNA molecules.

Since 1977, of course, we've learned a lot more about each end of the scale.  We now know that the universe itself is anisotropic -- the stars and galaxies are not uniformly distributed across space, but exists in superclusters and filaments, with enormous empty spaces in between -- accurately if spookily called "cosmic voids."  (One of them, the Boötes void, is nicknamed "The Great Nothing," and is so large that if the Sun was at the center of it, the night sky would be completely black, and we would not have had a telescope powerful enough to find out about the existence of other stars until the 1960s.)

[Image is licensed under the Creative Commons Richard Powell, Nearsc, CC BY-SA 2.5]

A piece of research published this week in the journal Astronomy and Astrophysics has added another piece to our understanding of the structure of the universe, but raised a number of questions as well -- which, of course, good research should always do.

The paper, entitled "Isotropy and Statistics of the Cosmic Microwave Background Radiation," is an analysis of data from the Planck spacecraft, which has taken measurements for years of the radiation spread across the cosmos that is the remnant of the first flash of light at the moment of the Big Bang.  You'd expect that it would be fairly uniform -- given that the Big Bang kind of happened everywhere at once -- but the curious result of the research is that there is a "warm hemisphere" and a "cold hemisphere" of the universe, as measured by the deviation of the temperature from the average of only slightly above absolute zero -- and weirder still, that in the middle of the "warm hemisphere" is a giant cold spot.

[Image courtesy of the Planck Telescope Project]

What's the most bizarre about this is that the data hovers right on the edge of statistical significance, but the pattern has been detected more than once and does not seem to be a random fluctuation.  If it's correct, it'll force a significant rethinking of our understanding of the structure of the universe -- and how it all started.

So there's your moment of "geez, we are really tiny" for today.  On the Planck map picture above, the entire Milky Way -- 53,000 light years across, composed of about 250 billion stars -- is a single minuscule dot.  All of which makes our little struggles on this Pale Blue Dot seem rather inconsequential, doesn't it?

*******************************

As will be obvious to any long-time readers of Skeptophilia, I have a positive fascination with things that are big and scary and can kill you.

It's why I tell my students, in complete seriousness, if I hadn't become a teacher I'd have been a tornado chaser.  There's something awe-inspiring about the sheer magnitude of destruction they're capable of.  Likewise earthquakes, hurricanes, wildfires...

But as sheer destructive power goes, there's nothing like the ones that are produced off-Earth.  These are the subject of Phil Plait's brilliant, funny, and highly entertaining Death From the Skies.  Plait is best known for his wonderful blog Bad Astronomy, which simultaneously skewers pseudoscience and teaches us about all sorts of fascinating stellar phenomena.  Here, he gives us the scoop on all the dangerous ones -- supernovas, asteroid collisions, gamma-ray bursters, Wolf-Rayet stars, black holes, you name it.  So if you have a morbid fascination with all the ways the universe is trying to kill you, presented in such a way that you'll be laughing as much as shivering, check out Plait's book.

[Note:  If you purchase this book using the image/link below, part of the proceeds goes to support Skeptophilia!]