Skeptophilia (skep-to-fil-i-a) (n.) - the love of logical thought, skepticism, and thinking critically. Being an exploration of the applications of skeptical thinking to the world at large, with periodic excursions into linguistics, music, politics, cryptozoology, and why people keep seeing the face of Jesus on grilled cheese sandwiches.
Showing posts with label ecological recovery. Show all posts
Showing posts with label ecological recovery. Show all posts

Wednesday, February 15, 2023

Life finds a way

I've written here before about the Permian-Triassic Extinction, sometimes nicknamed "the Great Dying."  It occurred 251.9 million years ago, and like the Cretaceous Extinction 186 million years later -- the one that knocked out the non-avian dinosaurs -- it happened suddenly, destroying ecosystems worldwide that had been thriving prior to the event.

The cause of this cataclysm is still a matter of some debate.  Hypotheses include:

  • The formation of the Siberian Traps, an unimaginably huge lava flow covering most of eastern Siberia. (Its volume is estimated at four million cubic kilometers.)  The eruption would have burned everything in its wake, ripping through the vast Carboniferous coal and limestone beds, pumping tons of carbon dioxide into the atmosphere.  It would also have released huge amounts of sulfur dioxide -- not only a poison, but one of the most powerful greenhouse gases.  The result; massive global warming, oceanic acidifiction, and a catastrophic change in ecosystems worldwide.
  • The lockup of Pangaea.  The collision of smaller continents to form a supercontinent has a number of effects -- the eradication of coastline along the colliding margin, ecological changes from shifting ocean currents, and collapse of mid-ocean ridges (resulting in a huge drop in sea level) among them.
  • A "methane burp."  This sounds innocuous, but really, really isn't.  There's a tremendous amount of methane locked up in the form of clathrates -- a network of water ice with methane trapped inside.  These "frozen methane hydrates" coat the entire deep ocean floor.  The stuff is stable under cold temperatures and high pressures, but if something disturbs them, they begin to come apart, releasing bubbles of methane gas.  The bubbles expand as they rise, displacing more and more water, and when they hit the surface it causes a tsunami, not to mention releasing tons of methane into the atmosphere, which is not only toxic, it's also a greenhouse gas.
  • Bombardment by swarms of comets and/or meteorites.  The problem with confirming this hypothesis is that any geological evidence of meteorite collisions would be long since eroded away.  If the object(s) that impacted the Earth were metallic meteorites, it's possible that you could use the same technique Luis Alvarez pioneered to explain the Cretaceous Extinction, which wiped out most of the dinosaurs -- enrichment of a layer of sediment by dust that's high in metallic elements not found in large quantities elsewhere.  But if it was a comet (mostly ice) or a rocky meteorite, we might not see much in the way of evidence of the event.
Current expert opinion is that the first one is strongly implicated as the prime cause, but the others may have played a role as well.

In any case, the end result was the extinction of an estimated 95% of marine life and 85% of terrestrial life.  Several groups that had been dominant for millions of years -- trilobites, eurypterids, blastoids, and the orthid and productid brachiopods, for example -- were wiped out completely.

It's hard to fathom what this would be like (although we'd damn well better try; there are estimates of the current, largely anthropogenic, extinction rate that place it in the same range as the Permian-Triassic).  Overall, it seems like ninety percent of the world's species died.  At the same rates today, we'd be left with a grand total of two hundred species of birds in all of North America -- and only forty different kinds of mammals.  

The reason this rather dismal topic comes up is some new research that actually provides a glimmer of hope; a find by paleontologists in China suggesting that after this cataclysm, life rebounded amazingly fast -- resulting in thriving and diverse ecosystems in as little as a million years.

Artists' reconstruction of the Guiyang biota [Image courtesy of artists Dinghua Yang and Haijun Song]

The most amazing thing about this is that at that point, the situation was still, in a word, lousy.  The average sea surface temperature at the equator is estimated at around 35 C (95 F).  The pH was still way down -- how far down isn't known, but certainly enough to inhibit calcium carbonate production by mollusks and corals.  The carbon dioxide levels were still sky-high.  But astonishingly, the organisms that made it through the bottleneck managed to adapt even to these hostile conditions.  Even in the (very) early Triassic Period, life found a way to adapt.

I hesitate to draw too much cheer from all this, however.  The fact that the species who survived the Great Dying eventually did okay is little consolation to the tens of thousands of species that went extinct.  Even if what we're now doing -- rampant fossil fuel use, pollution, and deforestation -- won't wipe out every last living thing on Earth, the results could still be beyond catastrophic.  And while it's "geologically rapid," "recovery in a million or so years" won't help our children and grandchildren.

It's time we extend "learn from the past rather than ignoring it" to prehistoric events, not just historical ones.

****************************************


Saturday, June 2, 2018

Science shorts

After the last three days' depressing posts, I thought it was once again time to retreat to my happy place, which is: cool new scientific research.  So, for your reading entertainment, here are some early-summer shorts.

[Image licensed under the Creative Commons marcore! from Hong Kong, China, Board shorts 4, CC BY 2.0]

No, not those kind of shorts.  The scientific variety.

First, we have some research that appeared last week in the Journal of Applied Research in Memory and Cognition, done by Julia Soares and Benjamin Storm of the University of California.  In their paper, entitled, "Forget in a Flash: A Further Investigation of the Photo-Taking Impairment Effect," what Soares and Storm found that for reasons still unknown, taking a photo of something impairs your ability to remember it -- even if you know that you won't have access to the photo later.

The authors write:
A photo-taking-impairment effect has been observed such that participants are less likely to remember objects they photograph than objects they only observe.  According to the offloading hypothesis, taking photos allows people to offload organic memory onto the camera's prosthetic memory, which they can rely upon to “remember” for them.  We tested this hypothesis by manipulating whether participants perceived photo-taking as capable of serving as a form of offloading.  In [our] experiments, participants exhibited a significant photo-taking-impairment effect even though they did not expect to have access to the photos.  In fact, the effect was just as large as when participants believed they would have access to the photos.  These results suggest that offloading may not be the sole, or even primary, mechanism for the photo-taking-impairment effect.
The authors were interviewed by Alex Fradera for the Research Digest of the British Psychological Society, and there's a possible explanation for the phenomenon, although it's still speculative.  Fradera writes:
Soares and Storm have a speculative second interpretation.  They suggest that the effort involved in taking a photo – getting the framing right, ensuring the lens is in focus – leads to the sense that you’ve done a good job of encoding the object itself, even though you have been focusing more on peripheral features.  So you’re not mentally slacking-off because you think the camera has it covered – but because you think you already have.  It may be relevant that people who take photographs at events report afterwards feeling more immersed in the experience, which would tally more with this explanation than the disengagement-due-to-fiddling idea.  In any case this is further evidence that those of us who approach exciting life events through the lenses of our electronic devices may be distancing ourselves from fuller participation.

From the Department of Geophysics at the University of Texas comes a study of the most famous (although not, by a long shot, the largest) mass extinction event -- the Cretaceous-Tertiary Extinction of 65 million years ago, which took out the dinosaurs, with the exception of the ancestors of today's birds.  The accepted explanation of the event is a collision by a massive meteorite near what is now the Yucatán Peninsula, forming the Chicxulub Crater.

A long-unanswered question about mass extinctions such as this one is how fast life rebounded.  The problem is that the difference between a thousand, ten thousand, and a hundred thousand years in the geological record isn't that great, so the error rate for any estimates were bound to be high.  But now, geophysicists Chris Lowery, Gail Christeson, Sean Gulick, and Cornelia Rasmussen, working with Timothy Bralower, a micropaleontologist at Pennsylvania State University, have found evidence that narrows that window down -- and surprisingly, shows that life recovered pretty quickly.

The key was finding a sediment core that contained 76 centimeters of brown limestone that came from the years immediately following the impact.  It contained debris from the event, including crystals of "shocked quartz" (quartz crystals showing signs of sudden, extreme temperatures and pressures).  And what the researchers found was that a little as a few thousand years, the ecosystem was beginning to rebound.

"You can see layering in this core, while in others, they’re generally mixed, meaning that the record of fossils and materials is all churned up, and you can’t resolve tiny time intervals," Bralower said.  "We have a fossil record here where we’re able to resolve daily, weekly, monthly, yearly changes."


Speaking of catastrophes, a fascinating piece of research from Stanford University anthropologists Tian Chen Zeng, Alan Aw, and Marcus Feldman gives us a possible explanation for a peculiar calamity that the human race experienced only seven thousand years ago.  By analyzing the genetic diversity among human Y-chromosomal DNA (inherited only father-to-son) and comparing it to the diversity in mitochondrial DNA (inherited only mother-to-child), they found something decidedly odd; the data suggested a serious genetic bottleneck -- but one that affected only males.

The difference was huge.  Zeng et al. showed that the disparity would only make sense if there was a point about seven thousand years ago when there was one male with surviving descendants for every seventeen females.

Feldman writes, in a press release to EurekAlert!:
After the onset of farming and herding around 12,000 years ago, societies grew increasingly organized around extended kinship groups, many of them patrilineal clans - a cultural fact with potentially significant biological consequences. The key is how clan members are related to each other.  While women may have married into a clan, men in such clans are all related through male ancestors and therefore tend to have the same Y chromosomes.  From the point of view of those chromosomes at least, it's almost as if everyone in a clan has the same father. 
That only applies within one clan, however, and there could still be considerable variation between clans.  To explain why even between-clan variation might have declined during the bottleneck, the researchers hypothesized that wars, if they repeatedly wiped out entire clans over time, would also wipe out a good many male lineages and their unique Y chromosomes in the process.
So as weird as it sounds, if you go back a few thousand years, we all have far fewer unique male ancestors than unique female ancestors.


Last, I would be remiss if I didn't make at least a brief mention of research that appeared in the Journal of Clinical Endocrinology and Metabolism last week.  Authored by Audrey J. Gaskins, Rajeshwari Sundaram, Germaine M. Buck Louis, and Jorge E. Chavarro, the paper was entitled "Seafood Intake, Sexual Activity, and Time to Pregnancy," and amongst its conclusion was that the quantity of seafood eaten correlates positively with the number of times per month people have sex.

The researchers speculate that the reason may be the higher quantity of long-chain omega-3 fatty acids, common in seafood, has an effect on the reproductive hormones, increasing sex drive.  It does, however, make me wonder how anyone thought of correlating these, but my puzzlement is probably indicative of why I never went into research.

In any case, I thought it was interesting.  And makes me glad I brought leftover scampi for lunch.  Hope springs eternal, you know?

************************

This week's recommended book is one that blew me away when I first read it, upon the urging of a student.  By groundbreaking neuroscientist David Eagleman, Incognito is a brilliant and often astonishing analysis of how our brains work.  In clear, lucid prose, Eagleman probes the innermost workings of our nervous systems -- and you'll learn not only how sophisticated it is, but how easy it can be to fool.