Skeptophilia (skep-to-fil-i-a) (n.) - the love of logical thought, skepticism, and thinking critically. Being an exploration of the applications of skeptical thinking to the world at large, with periodic excursions into linguistics, music, politics, cryptozoology, and why people keep seeing the face of Jesus on grilled cheese sandwiches.
Showing posts with label pitch. Show all posts
Showing posts with label pitch. Show all posts

Wednesday, March 5, 2025

Watch your tone!

You probably know that there are many languages -- the most commonly-cited are Mandarin and Thai -- that are tonal.  The pitch, and pitch change across a syllable, alter its meaning.  For example, in Mandarin, the syllable "ma" spoken with a high steady tone means "mother;" with a falling then rising tone, it means "horse."

If your mother is anything like mine was, confusing these is not a mistake you'd make twice.

A pitch vs. time graph of the five tones in Thai [Image licensed under the Creative Commons Thtonesen.jpg: Lemmy Laffer derivative from Bjankuloski06en, Thai tones, CC BY-SA 3.0]

English is not tonal, but there's no doubt that pitch and stress change can communicate meaning.  The difference is that pitch alterations in English don't change the denotative (explicit) meaning, but can drastically change the connotative (implied) meaning.  Consider the following sentence:

He told you he gave the package to her?

Spoken with a neutral tone, it's simply an inquiry about a person's words and actions.  Now, one at a time, change which word is stressed:

  • He told you he gave the package to her?  (Implies the speaker was expecting someone else to do it.)
  • He told you he gave the package to her? (Implies surprise that you were told about the action.)
  • He told you he gave the package to her? (Implies surprise that you were the one told about it)
  • He told you he gave the package to her? (Implies the speaker expected the package should have been paid for)
  • He told you he gave the package to her? (Implies that some different item was expected to be given)
  • He told you he gave the package to her? (Implies surprise at the recipient of the package)

Differences in word choice can also create sentences with identical denotative meanings and drastically different connotative meanings.  Consider "Have a nice day" vs. "I hope you manage to enjoy your next twenty-four hours," and "Forgive me, Father, for I have sinned" vs. "I'm sorry, Daddy, I've been bad."

You get the idea.

All of this is why mastery of a language you weren't born to is a long, fraught affair.

The topic comes up because of some new research out of Northwestern University that identified the part of the brain responsible for recognizing and abstracting meaning from pitch and inflection -- what linguists call the prosody of a language.  A paper this week in Nature Communications showed that Heschl's gyrus, a small structure in the superior temporal lobe, actively analyzes spoken language for subtleties of rhythm and tone and converts those perceived differences into meaning.

"Our study challenges the long-standing assumptions how and where the brain picks up on the natural melody in speech -- those subtle pitch changes that help convey meaning and intent," said G. Nike Gnanataja, who was co-first author of the study.  "Even though these pitch patterns vary each time we speak, our brains create stable representations to understand them."

"The results redefine our understanding of the architecture of speech perception," added Bharath Chandrasekaran, the other co-first author.  "We've spent a few decades researching the nuances of how speech is abstracted in the brain, but this is the first study to investigate how subtle variations in pitch that also communicate meaning are processed in the brain."

It's fascinating that we have a brain area dedicated to discerning alterations in the speech we hear, and curious that similar research on other primates shows that while they have a Heschl's gyrus, it doesn't respond to changes in prosody.  (What exact role it does have in other primates is still a subject of study.)  This makes me wonder if it's yet another example of preaptation -- where a structure, enzyme system, or gene evolves in one context, then gets co-opted for something else.  If so, our ancestors' capacity for using their Heschl's gyri to pick up on subtleties of speech drastically enriched their abilities to encode meaning in language.

But I should wrap this up, because I need to go do my Japanese language lessons for the day.  Japanese isn't tonal, but word choice strongly depends on the relative status of the speaker and the listener, so which words you use is critical if you don't want to be looked upon as either boorish on the one hand, or putting on airs on the other.

I wonder how the brain figures all that out?

****************************************


Saturday, April 29, 2023

Pitch perfect

Consider the simple interrogative English sentence, "She gave the package to him today?"

Now, change one at a time which word is stressed:

  • "She gave the package to him today?"
  • "She gave the package to him today?"
  • "She gave the package to him today?"
  • "She gave the package to him today?"
  • "She gave the package to him today?"

English isn't a tonal language -- where patterns of rise and fall of pitch change the meaning of a word -- but stress (usually as marked by pitch and loudness changes) sure can change the connotation of a sentence.  In the above example, the first one communicates incredulity that she was the one who delivered the package (the speaker expected someone else to do it), while the last one clearly indicates that the package should have been handed over some other time than today.

In tonal languages, like Mandarin, Thai, and Vietnamese, pitch shifts within words completely change the word's meaning.  In Mandarin, for example,  (the vowel spoken with a high level tone) means "mother," while  (the vowel spoken with a dip in tone in the middle, followed by a quick rise) means "horse."  While this may sound complex to people -- like myself -- who don't speak a tonal language, if you learn it as a child it simply becomes another marker of meaning, like the stress shifts I gave in my first example.  My guess is that if you're a native English speaker, if you heard any of the above sentences spoken aloud, you wouldn't even have to think about what subtext the speaker was trying to communicate.

What's interesting about all this is that because most of us learn spoken language when we're very little, which language(s) we're exposed to alters the wiring of the language-interpretive structures in our brain.  Exposed to distinctive differences early (like tonality shifts in Mandarin), and our brains adjust to handle those differences and interpret them easily.  It works the other way, too; the Japanese liquid consonant /ɾ/, such as the second consonant in the city name Hiroshima, is usually transcribed into English as an "r" but the sound it represents is often described as halfway between an English /r/ and and English /l/.  Technically, it's an apico-alveolar tap -- similar to the middle consonant in the most common American English pronunciation of bitter and butter.  The fascinating part is that monolingual Japanese children lose the sense of a distinction between /r/ and /l/, and when learning English as a second language, not only often have a hard time pronouncing them as different phonemes, they have a hard time hearing the difference when listening to native English speakers.

All of this is yet another example of the Sapir-Whorf hypothesis -- that the language(s) you speak alter your neurology, and therefore how you perceive the world -- something I've written about here before.

The reason all this comes up is a study in Current Biology this week showing that the language we speak modifies our musical ability -- and that speakers of tonal languages show an enhanced ability to remember melodies, but a decreased ability to mimic rhythms.  Makes sense, of course; if tone carries meaning in the language you speak, it's understandable your brain pays better attention to tonal shifts.

The rhythm thing, though, is interesting.  I've always had a natural rhythmic sense; my bandmate once quipped that if one of us played a wrong note, it was probably me, but if someone screwed up the rhythm, it was definitely her.  Among other styles, I play a lot of Balkan music, which is known for its oddball asymmetrical rhythms -- such wacky time signatures as 7/8, 11/16, 18/16, and (I kid you not) 25/16:


I picked up Balkan rhythms really quickly.  I have no idea where this ability came from.  I grew up in a relatively non-musical family -- neither of my parents played an instrument, and while we had records that were played occasionally, nobody in my extended family has anywhere near the passion for music that I do.  I have a near-photographic memory for melodies, and an innate sense of rhythm -- whatever its source.

In any case, the study is fascinating, and gives us some interesting clues about the link between language and music, and that the language we speak remodels our brain and changes how we hear and understand the music we listen to..  The two are deeply intertwined, there's no doubt about that; singing is a universal phenomenon.  And making music of other sorts goes back to our Neanderthal forebears, on the order of forty thousand years ago, to judge by the Divje Babe bone flute.

I wonder how this might be connected to what music we react emotionally to.  This is something I've wondered about for ages; why certain music (a good example for me is Stravinsky's Firebird) creates a powerful emotional reaction, and other pieces generate nothing more than a shoulder shrug.

Maybe I need to listen to Firebird and ponder the question further.

****************************************



Thursday, March 9, 2023

Pitch perfect

I've been a music lover since I was little.  My mom used to tell the story of my being around four years old and begging her to let me put records on the record player.  At first, she was reluctant, but for once my persistence won the day, and she finally relented.  To my credit, despite my youth I was exceedingly careful and never damaged a record; the privilege was too important to me to risk revocation.  There were certain records I played over and over, such as Rimsky-Korsakov's Scheherazade (a piece I love to this day).

I've always been fascinated with the question of whether musicality is inborn or learned.  My parents, while they had a decent record collection, weren't musical themselves; they certainly didn't have anything like the passion for it I experienced.  While the capacity for appreciating music is still poorly understood, today I'd like to tell you about some research indicating that the way our brains interpret tone structure is inborn.

First, a little background.

While it may appear on first glance that the major key scale -- to take the simplest iteration of tone structure as an example -- must be arbitrary, there's an interesting relationship between the frequencies of the notes.  Middle C, for example, has a frequency of about 260 hertz (depending on how your piano is tuned), and the C above middle C (usually written C') has exactly twice that frequency, 520 hertz. Each note is half the frequency of the note one octave above.  The frequency of G above middle C (which musicians would say is "a fifth above") has a frequency of 3/2 that of the root note, or tonic (middle C itself), or 390 hertz.  The E above middle C (a third above) has a frequency of 5/4 that of middle C, or 325 hertz.  Together, these three make up the "major triad" -- a C major chord.  (The other notes in the major scale also have simple fractional values relative to the frequency of the tonic.)

[Note bene: Music theoretical types are probably bouncing up and down right now and yelling that this is only true if the scale is in just temperament, and that a lot of Western orchestral instruments are tuned instead in equal temperament, where the notes are tuned in intervals that are integer powers of the basic frequency increase of one half-tone.  My response is: (1) yes, I know, and (2) what I just told you is about all I understand of the difference, and (3) the technical details aren't really germane to the research I'm about to reference.  So you must forgive my oversimplifications.]

Because there are such natural relationships between the notes in a scale, it's entirely possible that our ability to perceive them is hard-wired.  It takes no training, for example, to recognize the relationship between a spring that is vibrating at a frequency of f (the lower wave on the diagram) and one that is vibrating at a frequency of 2f (the upper wave on the diagram).  There are exactly twice the number of peaks and troughs in the higher frequency wave as there are in the lower frequency wave.


Still, being able to see a relationship and hear an analogous one is not a given.  It seems pretty instinctive; if I asked you (assuming you're not tone deaf) to sing a note an octave up or down from one I played on the piano, you probably could do it, as long as it was in your singing range.

But is this ability learned because of our early exposure to music that uses that chord structure as its basis?  To test this, it would require comparing a Western person's ability to match pitch and jump octaves (or other intervals) with someone who had no exposure to music with that structure -- and that's not easy, because most of the world's music has octaves, thirds, and fifths somewhere, even if there are other differences, such as the use of quarter-tones in a lot of Middle Eastern music.

This brings us to a paper in the journal Current Biology called "Universal and Non-universal Features of Musical Pitch Perception Revealed by Singing," by Nori Jacoby (of the Max Planck Institute and Columbia University), Eduardo A. Undurraga, Joaquín Valdés, and Tomás Ossandón (of the Pontificia Universidad Católica de Chile), and Malinda J. McPherson and Josh H. McDermott (of MIT).  And what this team discovered is something startling; there's a tribe in the Amazon which has had no exposure to Western music, and while they are fairly good at mimicking the relationships between pairs of notes, they seemed completely unaware that they were singing completely different notes (as an example, if the researchers played a C and a G -- a fifth apart -- the test subjects might well sing back an A and an E -- also a fifth apart but entirely different notes unrelated to the first two).

The authors write:
Musical pitch perception is argued to result from nonmusical biological constraints and thus to have similar characteristics across cultures, but its universality remains unclear.  We probed pitch representations in residents of the Bolivian Amazon—the Tsimane', who live in relative isolation from Western culture—as well as US musicians and non-musicians.  Participants sang back tone sequences presented in different frequency ranges.  Sung responses of Amazonian and US participants approximately replicated heard intervals on a logarithmic scale, even for tones outside the singing range.  Moreover, Amazonian and US reproductions both deteriorated for high-frequency tones even though they were fully audible.  But whereas US participants tended to reproduce notes an integer number of octaves above or below the heard tones, Amazonians did not, ignoring the note “chroma” (C, D, etc.)...  The results suggest the cross-cultural presence of logarithmic scales for pitch, and biological constraints on the limits of pitch, but indicate that octave equivalence may be culturally contingent, plausibly dependent on pitch representations that develop from experience with particular musical systems.
Which is a very curious result.

It makes me wonder if our understanding of a particular kind of chord structure isn't hardwired, but is learned very early from exposure -- explaining why so much of pop music has a familiar four-chord structure (hilariously lampooned by the Axis of Awesome in this video, which you must watch).  I've heard a bit of the aforementioned Middle Eastern quarter-tone music, and while I can appreciate the artistry, there's something about it that "doesn't make sense to my ears."

Of course, to be fair, I feel the same way about jazz.

In any case, I thought this was a fascinating study, and like all good science, opens up a variety of other angles of inquiry.  Myself, I'm fascinated with rhythm more than pitch or chord structure, ever since becoming enthralled by Balkan music about thirty years ago.  Their odd rhythmic patterns and time signatures -- 5/8, 7/8, 11/16, 13/16, and, no lie, 25/16 -- take a good bit of getting used to, especially for people used to good old Western threes and fours.

So to conclude, here's one example -- a lovely performance of a dance tune called "Gankino," a kopanica in 11/16.  See what sense you can make of it.  Enjoy!

****************************************



Friday, September 20, 2019

Pitch perfect

Following up on a post last week about our perception of aesthetics in music, today we look at the question of whether the way our brains interpret tone structure is inborn.

While it may appear on first glance that the major key scale -- to take the simplest iteration of tone structure as an example -- must be arbitrary, there's an interesting relationship between the frequencies of the notes.  Middle C, for example, has a frequency of about 260 hertz (depending on how your piano is tuned), and the C above middle C (usually written C') has exactly twice that frequency, 520 hertz.  Each note is half the frequency of the note one octave above.  The frequency of G above middle C (which musicians would say is "a fifth above") has a frequency of 3/2 that of the root note, or tonic (middle C itself), or 390 hertz.  The E above middle C (a third above) has a frequency of 5/4 that of middle C, or 325 hertz.  Together, these three make up the "major triad" -- a C major chord.  (The other notes in the major scale also have simple fractional values relative to the frequency of the tonic.)

[Note bene:  Music theoretical types are probably bouncing up and down right now and yelling that this is only true if the scale is in just temperament, and that a lot of Western orchestral instruments are tuned instead in equal temperament, where the notes are tuned in intervals that are integer powers of the basic frequency increase of one half-tone.  My response is: (1) yes, I know, and (2) what I just told you is about all I understand of the difference, and (3) the technical details aren't really germane to the research I'm about to reference.  So you must forgive my oversimplifications.]

Because there are such natural relationships between the notes in a scale, it's entirely possible that our ability to perceive them is hard-wired.  It takes no training, for example, to recognize the relationship between a spring that is vibrating at a frequency of f (the lower wave on the diagram) and one that is vibrating at a frequency of 2f (the upper wave on the diagram).  There are exactly twice the number of peaks and troughs in the higher frequency wave as there are in the lower frequency wave.


Still, being able to see a relationship and hear an analogous one is not a given.  It seems pretty instinctive; if I asked you (assuming you're not tone deaf) to sing a note an octave up or down from one I played on the piano, you probably could do it, as long as it was in your singing range.

But is this ability learned because of our early exposure to music that uses that chord structure as its basis?  To test this, it would require comparing a Western person's ability to match pitch and jump octaves (or other intervals) with someone who had no exposure to music with that structure -- and that's not easy, because most of the world's music has octaves, thirds, and fifths somewhere, even if there are other differences, such as the use of quarter-tones in a lot of Middle Eastern music.

Just this week a paper was published in the journal Current Biology called "Universal and Non-universal Features of Musical Pitch Perception Revealed by Singing," by Nori Jacoby (of the Max Planck Institute and Columbia University), Eduardo A. Undurraga, Joaquín Valdés, and Tomás Ossandón (of the Pontificia Universidad Católica de Chile), and Malinda J. McPherson and Josh H. McDermott (of MIT).  And what this team discovered is something startling; there's a tribe in the Amazon which has had no exposure to Western music, and while they are fairly good at mimicking the relationships between pairs of notes, they seemed completely unaware that they were singing completely different notes (as an example, if the researchers played a C and a G -- a fifth apart -- the test subjects might well sing back an A and an E -- also a fifth apart but entirely different notes unrelated to the first two).

The authors write:
Musical pitch perception is argued to result from nonmusical biological constraints and thus to have similar characteristics across cultures, but its universality remains unclear.  We probed pitch representations in residents of the Bolivian Amazon—the Tsimane', who live in relative isolation from Western culture—as well as US musicians and non-musicians.  Participants sang back tone sequences presented in different frequency ranges.  Sung responses of Amazonian and US participants approximately replicated heard intervals on a logarithmic scale, even for tones outside the singing range.  Moreover, Amazonian and US reproductions both deteriorated for high-frequency tones even though they were fully audible.  But whereas US participants tended to reproduce notes an integer number of octaves above or below the heard tones, Amazonians did not, ignoring the note “chroma” (C, D, etc.)...  The results suggest the cross-cultural presence of logarithmic scales for pitch, and biological constraints on the limits of pitch, but indicate that octave equivalence may be culturally contingent, plausibly dependent on pitch representations that develop from experience with particular musical systems.
Which is a very curious result.

It makes me wonder if our understanding of a particular kind of chord structure isn't hardwired, but is learned very early from exposure -- explaining why so much of pop music has a familiar four-chord structure (hilariously lampooned by the Axis of Awesome in this video, which you must watch).  I've heard a bit of the aforementioned Middle Eastern quarter-tone music, and while I can appreciate the artistry, there's something about it that "doesn't make sense to my ears."

Of course, to be fair, I feel the same way about jazz.

In any case, I thought this was a fascinating study, and like all good science, opens up a variety of other angles of inquiry.  Myself, I'm fascinated with rhythm more than pitch or chord structure, ever since becoming enthralled by Balkan music about thirty years ago.  Their odd rhythmic patterns and time signatures -- 5/8, 7/8, 11/16, 13/16, and, no lie, 25/16 -- take a good bit of getting used to, especially for people used to good old Western threes and fours.

So to conclude, here's one example -- a lovely performance of a dance tune called "Gankino," a kopanica in 11/16.  See what sense you can make of it.  Enjoy!

**********************************

This week's Skeptophilia book recommendation made the cut more because I'd like to see what others think of it than because it bowled me over: Jacques Vallée's Passport to Magonia.

Vallée is an interesting fellow, and certainly comes with credentials; he has an M.S. in astrophysics from the University of Lille and a Ph.D. in computer science from Northwestern University.  He's at various times been an astronomer, a computer scientist, and a venture capitalist, and apparently was quite successful at all three.  But if you know his name, it's probably because of his connection to something else -- UFOs.

Vallée became interested in UFOs early, when he was 16 and saw one in his home town of Pontoise, France.  After earning his degree in astrophysics, he veered off into the study of the paranormal, especially allegations of alien visitation, associating himself with some pretty reputable folks (J. Allen Hynek, for example) and some seriously questionable ones (like the fraudulent Israeli spoon-bender, Uri Geller).

Vallée didn't really get the proof he was looking for (of course, because if he had we'd probably all know about it), but his decades of research compiles literally hundreds -- perhaps thousands -- of alleged sightings and abductions.  And that's what Passport to Magonia is about.  To Vallée's credit, he doesn't try to explain them -- he doesn't have a favorite hypothesis he's trying to convince you of -- he simply says that there are two things that are significant: (1) the number of claims from otherwise reliable and sane folks is too high for there not to be something to it; and (2) the similarity between the claims, going all the way back to medieval claims of abductions by spirits and "elementals," is great enough to be significant.

I'm not saying I necessarily agree with him, but his book is lucid and fascinating, and the case studies he cites make for pretty interesting reading.  I'd be curious to see what other Skeptophiles think of his work.

[Note: if you purchase this book using the image/link below, part of the proceeds goes to support Skeptophilia!]