Skeptophilia (skep-to-fil-i-a) (n.) - the love of logical thought, skepticism, and thinking critically. Being an exploration of the applications of skeptical thinking to the world at large, with periodic excursions into linguistics, music, politics, cryptozoology, and why people keep seeing the face of Jesus on grilled cheese sandwiches.
Showing posts with label endosymbiosis. Show all posts
Showing posts with label endosymbiosis. Show all posts

Saturday, April 13, 2024

The stowaways

Aficionados of the Star Trek universe undoubtedly recall the iconic character Jadzia Dax.  Dax was a Trill -- a fusion of a humanoid host and a strange-looking brain symbiont.  The union of the two blended their personalities, resulting in what was truly a new, composite life form.


Star Trek is amazing in a lot of ways, not least because of their attention to current science and an uncanny prescience about where science is heading.  It turns out that we're all composite life forms.  We carry around something like 39 trillion bacterial cells in and on our own bodies -- the vast majority of which are either commensals (neither helpful nor harmful) or are actually beneficial -- a number that is higher than the number of human cells we have.  Each of our cells also contains mitochondria, which are the descendants of endosymbiotic bacteria that have inhabited the cells of eukaryotes for billions of years, and without which we couldn't release energy from our food molecules.  Plants have not only mitochondria but chloroplasts, yet another species of bacteria that like mitochondria, have their own DNA, took up residence in their hosts billions of years ago, and have been there ever since.

But the rabbit hole goes a hell of a lot deeper than that.  By some estimates, between five and eight percent of our genomes are endogenous retroviruses -- genetic fragments left behind by viruses that spliced their DNA into ours.  Like our bacterial hitchhikers, a good many of these are either neutral or beneficial; for example, the production of bile, estrogen, and several proteins essential for the formation of the placenta are all directly affected by endogenous retroviral genes.  A few do seem to be deleterious, and have roles in certain cancers, autoimmune diseases, and neurological disorders like ALS and schizophrenia.

What brings this topic up is an astonishing study led by Tyler Coale, of the University of California - Santa Cruz, that came out in the journal Science this week.  Coale's study found there's yet another example of endosymbiosis -- this one a lot more recently evolved -- which turned a formerly free-living nitrogen-fixing bacterium into a true cellular organelle.

Nitrogen is critical for the production of both proteins and DNA.  Although 78% of the air we breathe is nitrogen, it's completely useless to us; we breathe it right back out.  All the nitrogen in our bodies' proteins and nucleic acids had to pass through a food chain that started with nitrogen-fixing bacteria, the only known organisms that can absorb nitrogen from the air and convert it to an organic compound.  Leguminous plants like beans, peas, alfalfa, and clover have a nifty symbiotic arrangement with nitrogen-fixing bacteria; they create nodules in their roots where the bacteria live, and the bacteria provide the plants with a ready source of nitrogen.

But in legumes, the two remain independent organisms.  What Coale and his colleague discovered is a species of algae (Braarudosphaera bigelowii) in which the bacteria (UCYN-A) have evolved to become inseparable from the host cells.  In other words, they became an organelle, just like mitochondria and chloroplasts.

Although there's no canonical definition of organelle, most biologists include two must-haves: (1) coordinated division of the organelle within the cell; and (2) the evolution of a transport system that allows for specific tagging and importation of proteins into the organelle.  By those standards, UCYN-A is definitely an organelle.  

"Both boxes are checked by Coale," said Jeff Elhai, microbiologist at Virginia Commonwealth University.  "Even to the semantic purists, UCYN-A must be counted as an organelle, joining mitochondria, chloroplasts and chromatophores."

All these stowaways, in the cells of just about every living thing on Earth, call into question what exactly we mean not only by the word organelle but by the word organism.  The high-school-biology-class definition of an organism is "an individual life form of a species."  But is there any such thing?  The ostensibly individual life form called Gordon who is currently writing this post is made of (at least) equal numbers of human cells and cells from different species of bacteria, without many of which I'd be sick as hell, or possibly even dead.  Remove the symbiotic mitochondria from within my cells, and I'd definitely be dead -- within minutes.  Deeper still, at a minimum, one in twenty of the genes in my "human DNA" comes from viruses and bacteria.

Looked at closely, I'm as put together of spare parts as the Junk Man in Lost in Space.  Fortunately, I appear to run a bit more smoothly most days than he did.


In any case, calling me "a single organism" is so far from accurate it's almost laughable.

Honestly, it's kind of cool how interconnected everything is.  Back in the days of the first serious taxonomist, Swedish biologist Carl Linnaeus, scientists had the idea that all living things were categorizable into neat little cubbyholes.  Not only is that incorrect on the species level (something I wrote about in detail a couple of years ago), it's not even true on the individual level or on the level of genomes.  Life on Earth is a huge, tangled skein of threads.  The whole thing puts me in mind of a quote from John Muir: "Tug at a single thing in nature, and you find that it is hitched to everything else in the universe."

****************************************



Thursday, April 13, 2023

The stowaways

Aficionados of the Star Trek universe undoubtedly recall the iconic character Jadzia Dax.  Dax was a Trill -- a fusion of a humanoid host and a strange-looking brain symbiont.  The union of the two blended their personalities, resulting in what was truly a new, composite life form.


Star Trek is amazing in a lot of ways, not least because of their attention to current science and an uncanny prescience about where science is heading.  It turns out that we're all composite life forms.  We carry around something like 39 trillion bacterial cells in and on our own bodies -- the vast majority of which are either commensals (neither helpful nor harmful) or are actually beneficial -- a number that is higher than the number of human cells we have.  Each of our cells also contains mitochondria, which are the descendants of endosymbiotic bacteria that have inhabited the cells of eukaryotes for billions of years, and without which we couldn't release energy from our food molecules.  Plants have not only mitochondria but chloroplasts, yet another species of bacteria that like mitochondria, have their own DNA, took up residence in their hosts billions of years ago, and have been there ever since.

But as we saw in yesterday's post -- about a gene in the retinas of our eyes that we swiped from bacteria -- the rabbit hole goes a hell of a lot deeper than that.  By some estimates, between five and eight percent of our genomes are endogenous retroviruses -- genetic fragments left behind by viruses that spliced their DNA into ours.  Like our bacterial hitchhikers, a good many of these are either neutral or beneficial; for example, the production of bile, estrogen, and several proteins essential for the formation of the placenta are all directly affected by endogenous retroviral genes.  A few do seem to be deleterious, and have roles in certain cancers, autoimmune diseases, and neurological disorders like ALS and schizophrenia.

What brings this topic up is a study this week from the University of Innsbruck that found these stowaways everywhere they looked.  A comprehensive genetic analysis of single-celled organisms found no fewer than thirty thousand viral genes -- ten percent of the microbial genome!

This calls into question what exactly we mean by the word organism.  The canonical definition is "an individual life form of a species."  But is there any such thing?  The ostensibly individual life form called Gordon who is currently writing this post is made of (at least) equal numbers of human cells and cells from different species of bacteria, without many of which I'd be sick as hell, or possibly even dead.  Remove the symbiotic mitochondria from within my cells, and I'd definitely be dead -- within minutes.  Deeper still, at a minimum, one in twenty of the genes in my "human DNA" comes from viruses and bacteria.

Looked at closely, I'm as put together of spare parts as the Junk Man in Lost in Space.  Fortunately, I appear to run a bit more smoothly most days than he did.


In any case, calling me "a single organism" is so far from accurate it's almost laughable.

Honestly, it's kind of cool how interconnected everything is.  Back in the days of the first serious taxonomist, Swedish biologist Carl Linnaeus, scientists had the idea that all living things were categorizable into neat little cubbyholes.  Not only is that incorrect on the species level (something I wrote about in detail a couple of years ago), it's not even true on the individual level or on the level of genomes.  Life on Earth is a huge, tangled skein of threads.  The whole thing puts me in mind of a quote from John Muir: "Tug at a single thing in nature, and you find that it is hitched to everything else in the universe."

****************************************



Thursday, July 21, 2022

I contain multitudes

One of the things that even folks conversant in the evolutionary model sometimes don't know is the extent to which we are composite organisms.

On the gross level (and I mean that in both senses of the word), there is the sheer number of cells in us that are not human.  The adult human body has about 10 trillion human cells, and (depending on who you talk to) between 1 and 3 times more bacterial cells -- intestinal flora, bacteria hitching a ride on our skin, in our mouths, in our respiratory mucosa.  Most of these are commensals at the very worst -- neither harmful nor helpful -- but a significant number are in a mutualistic arrangement with us, which is one of several reasons why the overuse of antibiotics is a bad idea.

Then there are the little invaders we can't live without -- namely the mitochondria, those tiny organelles that every high school biology student knows are the "powerhouses of the cell."  What fewer people know is that they are actually separate organisms, descended from aerobic prokaryotes that colonized our cells 2.5 billion years ago (give or take a day or two).  They have their own DNA, and reproduce inside our cells by binary fission the same way they did when they were free-living proto-bacteria.

Mitochondria [Image is in the Public Domain courtesy of photographer Louisa Howard]

But that's not all. If you're a plant (I'm assuming you're not, but you never know), you have three separate ancestral lines -- your ordinary plant cells, the mitochondria, and the chloroplasts, which are also little single-celled invaders that now plants can't live without.  But even that's not the most extreme example.  The microorganism Mixotricha paradoxa is a composite being made up of five completely separate ancestral genomes that have fused together into one organism.

It's amazing how much these relationships alter behavior, sometimes in ways that blur the definition of the word "organism."  Is Mixotricha one organism or five?  Unsurprisingly, given their history of anticipating scientific discoveries, Star Trek gave a hard look at this question with the character of Jadzia Dax.  Dax is a Trill -- an individual produced by the fusion of a humanoid host and a long-lived symbiont.  Although the symbiont can survive after the death of the host, and go on to fuse with another one, the personalities remain blended, and the symbiont brings to its new host all the memories, skills, and traits it accessed from previous ones.

Weird stuff, but not so far off from what we see down here on Earth.


But back to humans, if you're not already so skeeved out that you've stopped reading.  Because it's even more complicated than what I've already told you -- check out a paper by geneticists Cedric Feschotte , Edward Chuong and Nels Elde of the University of Utah, in which we find out that even our nuclear DNA isn't entirely human.  Feschotte et al. have shown that ten percent of our thirty-thousand-odd genes and three-billion-odd base pairs...

... came from viruses.

We usually think of viruses as pesky little parasites that cause colds, flu, measles, mumps, and so on, but they're more than that.  Some of them -- the retroviruses (HIV being the best-known example) -- are capable of inserting genetic material into the host's DNA, thus altering what the host does.  Certainly, sometimes this is bad; both AIDS and feline leukemia are outcomes of this process.  But now Feschotte, Chuong, and Elde have shown that some of our viral hangers-on have had their genes repurposed to work in our benefit.

These stowaway bits of DNA are called endogenous retroviruses (ERVs), and some of them seem to be associated with cancer.  Others have been implicated in multiple sclerosis and schizophrenia.  But what the researchers found is that not all of them are deleterious; the gene that allows us to digest starch, and (even more importantly) the gene that triggers the fusion of the developing embryo to the placenta, seem to have viral origins.

"We think we’ve only scratched the surface here on the regulatory potential of ERVs," Feschotte said.

All of which is pretty amazing.  And it definitely gives one pause when you stop to think of how we define the word "organism."  Am I a single organism?  Well, not really.  Besides my regular human cells, I've got trillions of mitochondria, each with their separate bacterially-derived genome; and ten percent of what I think of as "my DNA" came from viruses, at least some of which has then been modified into genes that I depend on to survive.  So humans -- and all living things -- are looking more and more like composite colonies of symbiotic life forms, representing a web of interrelationships that is so complex that it's mind-boggling.

So, to hell with the weird, exotic life forms from Star Trek.  I'm too busy being blown away by how bizarre and cool the life here on Earth turns out to be.

****************************************


Monday, February 15, 2021

I contain multitudes

One of the things that even folks conversant in the evolutionary model sometimes don't know is the extent to which we are composite organisms.

On the gross level (and I mean that in both senses of the word), there is the sheer number of cells in us that are not human.  The adult human body has about 10 trillion human cells, and (depending on who you talk to) between 1 and 3 times more bacterial cells -- intestinal flora, bacteria hitching a ride on our skin, in our mouths, in our respiratory mucosa.  Most of these are commensals at the very worst -- neither harmful nor helpful -- but a significant number are in a mutualistic arrangement with us, which is one of several reasons why the overuse of antibiotics is a bad idea.

Then there are the little invaders we can't live without -- namely the mitochondria, those tiny organelles that every high school biology student knows are the "powerhouses of the cell."  What fewer people know is that they are actually separate organisms, descended from aerobic prokaryotes that colonized our cells 2.5 billion years ago (give or take a day or two).  They have their own DNA, and reproduce inside our cells by binary fission the same way they did when they were free-living proto-bacteria.

Mitochondria [Image is in the Public Domain courtesy of microscopist/photographer Louisa Howard]

And that's not all.  If you're a plant (I'm assuming you're not, but you never know), you have three separate ancestral lines -- your ordinary plant cells, the mitochondria, and the chloroplasts, which are also little single-celled invaders that now plants can't live without.  But even that's not the most extreme example.  The microorganism Mixotricha paradoxa is a composite being made up of five completely separate ancestral genomes that have fused together into one organism.

But back to humans, if you're not already so skeeved out that you've stopped reading.  Because it's even more complicated than what I've already told you, as you'll learn from geneticists Cedric Feschotte, Edward Chuong and Nels Elde of the University of Utah in a paper in which we find out that even our nuclear DNA isn't entirely human.  10% of our 30,000-odd genes and three-billion-odd base pairs...

... came from viruses.

We usually think of viruses as little parasites, some of which are killers like COVID-19, rabies, and ebola fever, but also include nuisances like colds, flu, warts and chickenpox.  Turns out, though, that they're more than that.  Some of them -- the retroviruses (HIV being the best-known example) -- are capable of inserting genetic material into the host's DNA, thus altering what the host does.  Certainly, sometimes this is bad; both AIDS and feline leukemia are outcomes of this process.  But now Feschotte, Chuong, and Elde have shown that some of our viral hangers-on have had their genes repurposed to work in our benefit.

These stowaway bits of DNA are called endogenous retroviruses (ERVs), and some of them seem to be associated with cancer.  Others have been implicated in multiple sclerosis and schizophrenia.  But what the researchers found is that not all of them are deleterious; the gene that allows us to digest starch, and (even more importantly) the gene that triggers the fusion of the developing embryo to the placenta, seem to have viral origins.

"We think we’ve only scratched the surface here on the regulatory potential of ERVs," Feschotte said.

All of which is pretty amazing.  And it definitely gives one pause when you stop to think of how we define the word "organism."  Am I a single organism?  Well, not really.  Besides my regular human cells, I've got trillions of prokaryotic hangers-on and trillions of mitochondria, each with their separate bacterially-derived genome; and 10% of what I think of as "my DNA" came from viruses, at least some of which has then been modified into genes that I depend on to survive.  So humans -- and all living things -- are looking more and more like composite colonies of symbiotic life forms, representing a web of interrelationships that is so complex that it's mind-boggling.

Remember the Trill from Star Trek:Deep Space Nine?  A lot of us were kind of creeped out to find out that Jadzia Dax's personality and intelligence didn't come from her humanoid brain, but from a weird, crustacean-like symbiotic life form that was wired into her nervous system.  Turns out that once again, Star Trek hit close to the target of the reality we've now uncovered with science -- only the reality is even more bizarre than the fiction.

So step aside, Star Trek aliens.  I'm too busy being blown away by how weird and cool the life here on Earth turns out to be.

*********************************

Back when I taught Environmental Science, I used to spend at least one period addressing something that I saw as a gigantic hole in students' knowledge of their own world: where the common stuff in their lives came from.  Take an everyday object -- like a sink.  What metals are the faucet, handles, and fittings made of?  Where did those metals come from, and how are they refined?  What about the ceramic of the bowl, the pigments in the enamel on the surface, the flexible plastic of the washers?  All of those substances came from somewhere -- and took a long road to get where they ended up.

Along those same lines, there are a lot of questions about those same substances that never occur to us.  Why is the elastic of a rubber band stretchy?  Why is glass transparent?  Why is a polished metal surface reflective, but a polished wooden surface isn't?  Why does the rubber on the soles of your running shoes grip -- but the grip worsens when they're wet, and vanishes entirely when you step on ice?

If you're interested in these and other questions, this week's Skeptophilia book-of-the-week is for you.  In Stuff Matters: Exploring the Marvelous Materials that Shape Our Man-Made World, materials scientist Mark Miodownik takes a close look at the stuff that makes up our everyday lives, and explains why each substance we encounter has the characteristics it has.  So if you've ever wondered why duct tape makes things stick together and WD-40 makes them come apart, you've got to read Miodownik's book.

[Note: if you purchase this book using the image/link below, part of the proceeds goes to support Skeptophilia!]